

Methods for Developing ASF Grids for Harbor Entrance and Approach

Authors

Prof. Peter Swaszek

 University of Rhode Island

 Dr. Gregory Johnson, Alion JJMA Maritime Sector
 Capt. Richard Hartnett, PhD

 US Coast Guard Academy

HEA Navigation Concept

ASF corrected TOAs:

- To remove spatial component:
 - Use published grid, interpolate between grid points
 - Issues include grid density, regions of interest, and grid creation
- To remove temporal component:
 - Local monitor receiver, broadcast offsets over LDC
 - Issues include correlation distance, monitor averaging, multiple monitor interpolation

Goals for Today

Grid creation:

Data collection and processing:
 Static (stationary platform)
 Dynamic (moving platform)
 Review processing performed
 Methods for converting to a grid
 Sample navigation performance

Data Collection in NY Harbor

Data Collection

Phase 1 – May 2006

Vessel

- Slow circuit of harbor (5-6 kts)
- 25 Static locations
- Van

UNIVERSITY OF Rhode Island 19 Static locations

Phase 2 – Aug 2006

- Different vessel
 - Repeat upper harbor
 - 12 static locations
 - Continuous track in lower harbor

ILA 35 - Groton, CT

UNIVERSITY OF Rhode Island

Phase 2 Tracks

Data Processing

- TOAs processed to remove receiver filtering (and time lag)
- Precise track computed using L1/L2 GPS data post-processed with GrafNav s/w using CORS reference stations
- ASFs calculated using precise track position and unfiltered TOAs
- Relative ASFs calculated (ASF_{boat} ASF_{SI})

Rhode Island

Typical ASF Data

Grid Development

Our History

ION June 2004 – 500 m spacing BALOR grid on the Thames River

Not accurate enough in practice

ION Jan 2005 – survey data on the Thames River; naïve grouping; median chosen as **ASF** value Better, but still has issues

Weaknesses of Prior Work

- Some ASF values are missing (no data)
 No explicit correlation over adjacent grid points
- Geometry of data is not significantly used

Grids from Static Data

- Average to remove noise
- Use triangular interpolation on non-uniform grid
- Delaunay triangle surface

Uniform Static Grids

- Methods:
 - Interpolation between points
 - Have also tried
 Universal Kriging

Static Grid Performance Trial

Grid Creation – Dynamic Data

Recall standard linear interpolation:
 Given a function at grid points, we can interpolate a general *F*(*x*, *y*) by

$$F(x, y) = (1-a)(1-b)F(x_j, y_k) + a(1-b)F(x_{j+1}, y_k) + b(1-a)F(x_j, y_{k+1}) + abF(x_{j+1}, y_{k+1})$$

"Inverse Interpolation"

Turn the equations around:

 $(1-a)(1-b)F(x_{j}, y_{k}) + a(1-b)F(x_{j+1}, y_{k})$ $+ b(1-a)F(x_{j}, y_{k+1}) + abF(x_{j+1}, y_{k+1}) = F(x, y)$

- *a*, *b*, and *F*(*x*, *y*) are known
 so each data point yields a linear equation in 4 unknowns
- solve large set of simultaneous linear equations to get grids

Advantages of New Scheme

- Geometry of data is used
- Implicit correlation over adjacent grid points
- Fewer ASF values are missing

Sample Grid - Nantucket

 Skip grid points with only a few equations (noise averaging)

Lower Channel Test Created the Grid from One Day's

Data and Testing on a Track from the Next

Lower Channel grid

UNIVERSITY OF Rhode Island

Conclusions

Inverse Interpolation technique appears to be the best at this point

Leads to collecting data by continuous survey of harbors – covering as much of navigable area as possible

 20m accuracy possible with fairly sparse grid (500m spacing)

Questions?